
Journal of Engineering Physics and Thermophysics, VoL 73, No. 4, 2000 

SYS T E MS  O F  C O O R D I N A T E  FUNCTIONS 
IN H E A T - C O N D U C T I O N  P R O B L E M S  F O R  
M U L T I L A Y E R  BODIES 

V. A. Kudinov, R. Zh. Gabdushev, 
V. A. Obukhov, and V. V. Nekrylov 

UDC 536.2 (075) 

The authors have investigated the efficiency of  using different systems of  coordinate functions in heat- 
conduction problems for piecewise-homogeneous bodies. The analytical solutions obtained are com- 
pared with a computer-assisted calculation by numerical methods. 

In [ 1, 2] the authors develop a method of obtaining analytical solutions of boundary-value problems of 
heat conduction for multilayer structures that is based on the combined use of exact and approximate analytical 
methods [3]. In this approach, an exact method (Fourier, integral transforms, etc.) is used in relation to the 
independent parabolic variable, and an approximate methods (variational, weighted discrepancies, etc.) is used 
in relation to the independent elliptic coordinates. In the indicated works the authors discuss some approaches 
to constructing systems of coordinate functions that exactly satisfy the boundary conditions and conjugation 
conditions, including ones using local coordinate systems. 

The present work is concerned with investigations of the accuracy of solutions obtained using different 
systems of coordinate functions. The analytical solutions are compared with solutions obtained by numerical 
methods. 

Mathematically, the formulation of the heat-conduction problem for a two-layer plate using local coor- 
dinate systems with boundary conditions of the first kind (a symmetric problem) has the form 
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O 2 (A 2, Fo) = 0. 

The solution of the problem (1)-(6) in the zeroth and first approximations is sought in the form 

(6) 
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~)i (1]i, Fo) --fl (Fo) (Pli (1]i) • i = 1, 2 ,  (7) 

where fl(Fo) is an unknown function of time, and (Pli(11i) are coordinate functions determined by the formulas 

2 
IPll (t21)=A t +A212 ! ; 

- rl 2 tP12 (I12) =A3 +A4112 2,  
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(9) 

where A1, A2, A3, and A 4 are coefficients determined in such a way that the boundary conditions and the con- 
jugation conditions are satisfied exactly: 

2 1 7~'2 2. A~ . . . .  ; 
AI = A2 +AIA2 + 2 ~,i A1 ' - 2 )~1 

A 3=A~+A1A 2; A 4 = - A  1. 

To find the unknown function of time fl(Fo), we specify the discrepancy of Eq. (1) and require that it 
be orthogonal to the coordinate function equal to unity (the zeroth approximation [l, 2]). Hence we arrive at 
the following ordinary differential equation: 

f i  (Fo) N - f l  (Fo) M = 0 ,  (10) 

where 

. 2 )  al 
N=~(AI+A21"I~)d111+['(A3+A4112-122 d112' M---2f'd111- a + ' ~  2i'd112 " 

0 0 0 0 

The total integral of Eq. (10) is 

f l  (Fo) = C exp (MFo/N),  
( l l )  

where C is the integration constant, determined from the initial condition (2): 

C = (A 1 + AE)/N. (12) 

With account for (l l), (12), expression (7) acquires the form 

At + A2 exp (MFo/N) (Pli (1]i) (13) Oli (11i, Fo) - N 

Without using local coordinate systems the problem (1)-(6) can be mathematically formulated as 

~Oi (11i' Fo) ai 02Oi (11i, Fo) 
- 0 < 1 1 i <  1 ,  i = 1 , 2 ;  (14) 

~gFo a d112 ' 

0i(11 i, 0) = 1;  (15) 

001 (0, Fo)/0rl = 0 ; (16) 

Ol (111, Fo = 02  ("el, Fo) ; (17) 
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Fig. 1. Distribution of the dimensionless temperature in the two-layer 
plate at 1] = 0 (a) and 1] = 1]1 Co): 1) the method of finite differences; 2) 
the same coordinate system for both layers, 1] = 0; 3) local (separate for 

each layer) coordinate systems (for a: 111 = 0;  for b: 111 = 1). 

~'1 bO1 (I]1' Fo)  002 (1] l, Fo) (18) 
a,a - x2  aq  ' 

@ (1, Fo) = 0 ,  (19) 

where 1]i --. xi/~); ~ = 51 + ~2. 

The solution of the problem in the zeroth and first approximations is sought in the form 

(~1i 0] ,  Fo) = f I  (Fo)  ~01i (1]),  i = 1, 2 ,  (20) 

where coordinate functions q)li(q) that exactly satisfy the boundary conditions and the conjugation conditions 
are determined by the formulas 

(Pll (1] )=  BI + B2 112 ; (21) 

where 

where 

~012 (1"1) = 1 -- 1] 2 , (22) 

BI=t+/~ l)q2; B==-~/kl 
In this case, the solution of the problem in the zeroth approximation is 

1 
Oli (rl, Fo) = -if- exp (NzFo/Nl)  %i ( q ) ,  

1.1 
(23) 

111 ~2 ~l ~2 
a 2  l--I ml 

' ~ 1  " 0 ql 0 ql 

Relations (13), (23) were employed to solve the particular heat-conduction problem for a two- layer 
plate with the following initial data: 51 = 0.0015 m; ~ = 0.0055 m; X l = 0.207 W/(m.K); Lz = 1.28 W/(m-K); 
al = 0.147"10 -6 m2/sec; a2 = 0.494"10 -6 m2/sec; T01 = To2 = 100°C; Tw = 20°C. 

The results of  the solution are shown in Fig. 1. An analysis of these results allows us to conclude that 
for Fo > 0.06 the results obtained with the use of one coordinate system differ slightly from those obtained by 
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the method of finite differences. If the latter is considered to give the most accurate temperature values, then 
the results obtained with the use of  the local coordinate system are the least reliable. 

To improve the accuracy of  the solution, it is necessary to increase the number of approximations. In 
this case, the efficiency of  the method using local coordinate systems will increase in view of the substantial 
decrease in the volume of  calculations. This is related to the fact that the dimensionless coordinate in each 
layer varies from zero to Ai. As a result, the process of  evaluation of integrals in calculating the quantities M 
and N becomes substantially simplified, and with a large number of approximations the main volume of com- 
putations involves determination of  integrals of this kind. 

N O T A T I O N  

0 i ---- (T i -Tw)/(Toi-  Tw) , relative excess temperature; 1]i -- xi/8 , dimensionless coordinate of the i-th 
layer; Fo = txx/~ 2, Fourier number; 8 = 51 + ~2, total thickness of the two-layer wall; a, smallest thermal dif- 
fusivity ai (i = 1, 2); z~. = 8i/8, dimensionless thickness of the i-th layer; X,. (i = 1, 2), thermal conductivities; 

x, time; Toi (i = 1, 2), initial temperature; Tw, wall temperature. 
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